Respuesta :
Answer: Â " 2x (2x - 1) (x + 1) " .
______________________________________
Step-by-step explanation:
______________________________________
Given: Â
 f(x)  =  9x³ + 2x² − 5x  + 4  ;
 g(x)  =  5x³ − 7x + 4 ;
______________________________________
What is:  f(x) − g(x) ?
______________________________________
Plug in:  " 9x³ + 2x² − 5x + 4 "  for:  " f(x) " ;
  and:  " (5x³ − 7x + 4) " ;  for:  "g(x)" ;
______________________________________
→  " f(x) − g(x)  = Â
 Â
    " 9x³ + 2x² − 5x + 4  − (5x³ − 7x + 4) "  .
______________________________________
Rewrite this expression as:
 →  " 9x³ + 2x² − 5x + 4  − 1(5x³ − 7x + 4) "  .
 →  {since:  " 1 " ;  multiplied by "any value" ;  is equal to that same value.}.
______________________________________
Now, let us example the following portion of the expression:
______________________________________
 "  − 1(5x³ − 7x + 4) "
_____________________________________
Note the "distributive property" Â of multiplication:
______________________________________
  →  a(b + c) = ab + ac ;
______________________________________
Likewise:
   →  a(b + c + d) = ab + ac + ad .
______________________________________
As such:
______________________________________
  →  "  − 1(5x³ − 7x + 4)  "  ;
______________________________________
       =  (-1 * 5x³) + (-1 * 7x) + (-1 * 4) ;
       =  - 5x³  +  (-7x)  +  (-4)  ;
       =  - 5x³  − 7x − 4  ;
_____________________________________
Now, add the "beginning portion of the expression" ; that is:
 " f(x) " ;  to the expression ;  which is:
            →  9x³ + 2x² − 5x  +  4  ;
 →  as follows: Â
_______________________________________
 →  9x³ + 2x² − 5x  +  4 − 5x³ − 7x − 4  ;
 →  {Note that the:  " - " sign; that is;
    the "negative sign", in the term:  " -5x³ " ;
    becomes a: " − " sign; that is; a "minus sign" .}.
______________________________________
Now, combine the "like terms" of this expression; as follows:
 + 9x³  −  5x³  =  + 4x³ ;
 − 5x − 7x  =  − 2x ;
 + 4 − 4 = 0 ;
______________________________________
and we have:
______________________________________
 →   " 4x³  +  2x²  − 2x ".
______________________________________
Now, to write this answer in "factored form" :
Note that among all 3 (three) terms in this expression, each term has a factor of "2" . Â The lowest coefficient among these 3 (three) terms is "2" ; Â so we can "factor out" a "2". Â
Also, each of the 3 (three) terms in this fraction is a coefficient to a variable.  That variable takes the form of "x".  The term in this expression  with the variable, "x";  with the lowest degree has the variable: "x" (i.e. "x¹ = x" ) ;  so we can "factor out a "2x" (rather than just the number, "2".).
So, by factoring out a "2x" ;  take the first term [among the 3 (three) terms in the expression] —which is:  "4x³ " .
2x * (?)  = 4x³  ?  ;'
↔  [tex]\frac{4x^3}{2x} =[/tex] ? ;
→  4/2 = 2 ;
[tex]\frac{x^{3}}{x} = \frac{x^3}{x^1} Â = x^{(3-1)} = Â x^{2}[/tex] ; Â
As such:  2x * (2x²)  =  4x³ ;
___________________________________________
Now, by factoring out a "2x" ;  take the second term [among the 3 (three) terms in the expression] — which is:  "2x² " .
2x * (?) = 2x²  ? ;
↔  [tex]\frac{2x^{2}}{2x} =[/tex]  ?
→  2/2 = 1 ;
→  [tex]\frac{x^{2}}{x} = \frac{x^2}{x^1}= x^{(2-1)} } = x^1 = x[/tex] ;
As such:  2x * (x) = 2x²
__________________________________________
Now, by factoring out a "2x" ;  take the third term [among the 3 (three) terms in the expression] — which is:  " − 2x " .
2x * (?) = Â - 2x ;
↔  [tex]\frac{-2x}{2x} =[/tex] -1 ;
As such:  2x * (-1) =  − 2x . Â
__________________________________________
So:
__________________________________________
Given the simplified expression:
 →   " 4x³  +  2x²  − 2x " ;
We can "factor out' a: Â " 2x " ; Â and write the this answer is: "factored form" ; as:
__________________________________________
 "2x (2x²  +  x  −  1 ) . "
Now, we can further factor the:
  " (2x²  +  x  −  1) " ; portion;
Note:  "(2x² + x - 1)" =
2x² + 2x - 1x -1 = (2x -1) + x (2x - 1 ) =
(2x - 1) Â ( x + 1)
_______________________________________
Now, bring down the "2x" ; and write the Full "factored form" ; as follows:
_______________________________________
  →  " 2x (2x - 1) (x + 1) "  .
_______________________________________
Hope this helps!
 Wishing you the best!
_______________________________________